Melting Point Gram-Atomic Volumes and Enthalpies of Atomization for Liquid Elements

Ъу

R. H. Lamoreaux

Materials and Molecular Research Division, Lawrence Berkeley Laboratory and the Department of Chemistry, University of California,

Berkeley, California 94720

"This work was done with support from the U.S. Energy Research and Development Administration. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of the Lawrence Berkeley Laboratory nor of the U.S. Energy Research and Development Administration."

Values of the gram-atomic volumes and enthalpies of atomization to the monatomic ideal gas state for liquid elements at their melting points have been collected to facilitate predictions of the behavior of mixed systems. Estimated values are given for experimentally undetermined quantities.

Values of ΔH_0° for the atomization of elements at 0 K were taken from the compilation of Brewer. Heat contents and heats of fusion from various sources were used to derive the enthalpies of atomization of the liquid elements at their melting points. The appropriate relation is

 $\Delta H_{T_m}^o = \Delta H_o^o - (H_{T_m} - H_o)_{\text{solid}} - \Delta H_f + (H_{T_m} - H_o)_{\text{monatomic ideal gas}},$ where ΔH_f is the heat of fusion at the normal melting point. Where noted, the triple point or boiling point has been used rather than the melting point.

Volumes have been estimated as explained in the Appendix. Volumes of solids at room temperature calculated from metallic radii were multiplied by factors derived from analogous elements to take into account thermal expansion and phase changes. Solid volumes used as references are from Donohue.²

Experimental determination of the volumes of actinides beyond Bk are absent or subject to great uncertainty. The crystallographic data for Cf³, which has been used to predict divalency for Cf and Es^{3,4} has been shown to be that of a compound rather than Cf metal.⁵ In accordance with Brewer¹ the metals Cf, Es, Fm, and Lr have been treated as trivalent, and Md and No as divalent. Melting points, heats of fusion, and volumes have been accordingly estimated after the pattern of divalent and trivalent lanthanides.

In Table I, melting points are referred to the 1968 International Practical Temperature Scale. Values are given for $\Delta H_{\rm gd}^{\rm o}$, the enthalpy of atomization to the monatomic ideal gas in the electronic ground state, and for $\Delta H_{\rm Val}^{\rm o}$, the enthalpy of atomization to the gas in the valence state with the same electronic configuration as in the liquid state. The procedures for the calculation of $\Delta H_{\rm Val}^{\rm o}$ can be found in Reference 1.

Table I Melting Point Gram-Atomic Volumes and Enthalpies of Atomization for Liquid Elements

Notes	1																				-2
Not		ø			ಥ		၁ - ရ	` ಥ	5.		Γ		σ.	α	10	b , d	, r			ದ	م
Valence	State	d ^{0.5} 1.5	$^{8.5}_{\rm a}$	sp 2	f_{dsp}^{-}	2°2°	s 2 3	s 2.5	48.5 J.5	Sp	d0.5 0.5	d &	4	4 × 08p J	2 2 g	sp.	$^{0.5}_{\rm sp}^{0.5}$	ds:	fdsp	f_{dsp}^{9}	s 2 p
Ref.		0	9	9		9	0/	0	9	9	9	9	9		9	11	9	9	9		9
ΔH°al, cal/g.a.		(133 300)	(196 780)	157 994	(143 500)				(223 200)	(201 540)	68 992	(134 830)		(128 300)		(233 620)	88 736	110 820	135 125	(128 300)	
ΔH°, cal/g.a.		(88 300)	63 784	166 tl	(57 500)	1577	66 850	(18 587)	83 159	119 536	38 492	72 334	47 023	(62 300)	26 573	(137 100)	38 036	24 750	96 825	(34 300)	31 321
Ref.		6	53	9		9	.	6	23	9.	9	9	9		9	П	9	9	9		9
ΔHf.cal/g.a.		(3400)	2650	2580	(2900)	787	0009	(2850)	3060	12 000	1852	(5818)	2700	(3300)	1263.5	(30 000)	2040	1480	1305	(3300)	765.5
Ref.							16					91	16		18	1	97	16	16		18
V.cm ³ /g.a.		(27.4)	11.56	11.29	(19.0)	27.88	14.35	(36)	11.36	5.20	41.47	5.33	20.83	(18.0)	24.87	(4.16)	59.63	90.41	20.95	(18.0)	20.78
Ref.		9					ω	6		10		9	9		9	11		9	9		9
Tm,K		1324	1235.08	933.52	7449	83.81	1089	(575)	1337.58	2365	1002	1562	544.592	1562	265.9	(4165)	1113	594.258	1072	(1700)	172.18
Element			Ag												Br						CJ.

C	1613	12	(18.9)		3310	12	(83.500)	(127 500)		${ m f}^{7}{ m dsp}$	ದೆ
င္ပ	1770	9	7.61	16	3640	23	94 341	(187 140)	9	d6.5sp	
Cr.	2133	9	8.28	16	(404)	9	864 48		9		
Çs	301.54	9	72.36	16	200	9	17 671		9	ល	
Çn	1357.6	9	7.91	16	3131	53	75 751	(191 350)	9	d ^{8.5} sp ^{1.5}	
Dy	1684	9	(20.75)		2643	9	61 882	(127 680)	9	$^9\mathrm{dsp}$	ಥ
弫	1797	9	(21.00)		4757	9	66 403	132 100	9	$\mathrm{f}^{11}\mathrm{dsp}$	ಥ
Es	(1700)		(18.0)		(3300)	·	(30 500)	(133 500)		${ m f^{10}_{dsp}}$	ಥ
Eu	1001	9	(32.84)		2202	9	38 017	76 620	9	d ^{0.5} sp ^{0.5}	ಥ
<u>Γτ</u>	53.48	9	11.14	19	61.0	9	19 264		9	s p 5	Д
Fе	1811	9	7.94	16	3370	23	90 265		9		
Fa	(1800)		(16.9)		(3300)		(28 500)	(135 500)		${ m f}^{11}_{ m dsp}$	ಥ
Ŧ	(300)	0/	(82.1)		(200)	6	17 495		9	മ	ಥ
G B	302,89	9	11.82	16	1336	9	63 663	172 260	9	sp. 2	
Gđ	1587	9	(20.88)		2403		89 738	129 840	9	$\mathtt{f}^7\mathtt{dsp}$	ಥ
ge e	1211.4	9	13.23	16	8830	9	81 041		9	e de	
$_{ m H(eq)}$		9			14.025	9	51 776		9	Ø	Д
He			. 32				50		9	CV	გ ი
Hr	2504	9	(14.87)	76	(5750)	9	138 084	(178 000)	9	$^{d}^{2.5}_{sp}^{0.5}$	
Hg	234.288	9	14.66	16	548.6	9	14 796	122 370	9	Дs	
Но	1745	9	(21.04)		(2911)	9	63 292	(130 792)	9	$ m f^{10}dsp$	ಥ
н	386.7	9	31.88	18	1870	9	23 474		9	s 2 p 5	
In	429.784	9	16.37	16	780	9	56 96	156 995	9	sp ²	
ı. Li	2720	9	(6.61)	16	(6247)	9	149 868	(268 770)	9	d6.5 _{sp} 1.5	

Table I, contd.

•
で
42
¤
0
ပ
•
⊢·II
1
വ
-1
ام
<u>'as</u> l

	Ω			ಯ	ಥೆ	ಥ	9- 4			م				عہ)	α	ೆ ಹ	,c	ı		ه عم	<u> </u>	- 3	4 -
മ	2 6 s p	d1.5 _{sp} 0.5	່ ທ	${ m f}^{14}_{ m dsp}$	${ m f}^{13}{ m dsp}$	f ¹³ sp	ρ S	45.5 _{sp} 0.5	d5s	s p 3	ı ω	4 p	f ³ dsp	2	d7.5sp1.5	f_{1}^{14}	£333	4, S	des p	8 2 3	ຮຽກ ການ	fd3	228	24)
9	9	9	9		9		9	9	9	9	9	9	9	9	9			9	9	9		0	. 9	
		123 050		(177 000)	144 190	(006 62)				,			131 600				(167 000)		245 960			(155 000)		
20 682	2209	100 249	37 158	(65 000)	94 391	(22 900)	31 833	58 957	140 781	113 250	24 826	164 594	73 599	9.644	95 755	(21 900)	(000 66)	59 910	178 860	75 448		(135 000)	656 44	
9	9	9	9				9	9	23	9	9	23	9	9	23			9	9	9		6	9	
588	391.5	1481	717		(4457)	(2000)	2026	(2882)	8930	86.15	621	8260	1707	79.28	4110		(1400)	53.2	(1950)	157		(3500)	7411	
16	17	16	16	,			16	16	16	13	16	91	16	19	16			16	16		20		16	
47.18	34.17	23.35	13.47	(16.1)	(19.62)	(25.5)	15.30	9.55	(10.26)	15.97	24.17	(11.87)	21.57	16.76	7.44	(54)	(14.2)	12.24	(97.6)	17.7	27.0	(21.0)	19.57	
9	9	9	9		9		9	9	9	9	9	13	9	9	9		9	9	9	9	9	14	9	
	115.77																							d.
М	Ϋ́Υ	Га	Ľi	Lr	Lu	Md	Mg	Mn	Mo	N	Na	NP	Nd	Ne	Ni	No	ΝĎ	0	080	P(w)	P(r)	Ра	집	cont'd.

d7.5sp1.5	f ⁴ dsp	2 t	$f^2 dsp$	d7.5sp1.5	d ^{1.5} sp ^{0.5}	d0.5 0.5	w	d ⁵ sp	d6.5 l.5	, s 2 6	de.3 0.7	# 0. s	೭೩೩	d.5.0.5	s P 4	റ്റ്	fdsp	sp ³	do.5.0.5	d3.5sp0.5	f ⁸ dsp	d5.3 p0.7	t 2 s	
9	0	6	9	9	9	6	9	9	9	9	9	9	9	9	9	9	9	9	0	9	9	0	, 9	9
223 650	(131 000)		(132 460)	(200 590)	130 390	72 160		223 320	234 600		196 580			120 490		189 360	(127 660)	183 330	81 460	217 770	(128 810)	179 200		
83 447	(008 69)	31 244	80 762	126 671	79 290	33 858	18 768	169 117	123 103	3570	146 978	65 781	57 776	81 588	50 281	890 76	43 655	70 033	35.056	178 965	86 205	144 200	146 247	134 374
23	6		9	23	9				42		9		9		25	9	9	9	6/	9	9	9	9	9
4050	(3000)	(3000)	1646	5380	680	(2000)	524	(2461)	6321	(069)	(5803)	410.5	1,750	3369	1473	12 082	2060	1680	(2200)	(1560)	2580	(2995)	4180	(3653)
16			16	16	16		16	16	16		16		16		91	16		16	21	16			16	21
10.14	(21.6)	(24.1)	21.25	10.32	14.53	(44,8)	58.42	(96.6)	(9.27)	(50.5)	(9.27)	(17.69)	20.03	(15.0)	19.86	11.13	(21.66)	17.02	36.97	(12.06)	(20.57)	(9.6)	21.93	(21.8)
9	ė,	0	9	9	9	0	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
1827	(1300)	527	1205	2045	913	973	312.63	3459	2236	(202)	2527	388.37	903.89	1814	464	1687	1346	505.118	1042	3293	1632	2477	722.66	2031
Pđ	Pa	Ъ	Pr	式	Pa	Ra	Rb	Re	Rh	Rn	Ru	ထ	Sp	Si	Se	Si	Sm	Sn	Sr	∃a	Tp	Tc	E	Th

Table I, contd.

	d ^{2.5} sp ^{0.5}	୰ଌ	${ m f}^{ m l}{ m dsp}$		_d 3.5 _{sp} 0.5	4.5 po.5	s 2 6	$6 d^{1.5} sp^{0.5}$	ds 1,1	Q v	$d^{2} \cdot 7_{sp}$ 0.3
	9	9	9	9	9	9	9	9	6 f	9	9
	136 410		131 300		141 010	230 900		130 730	75 460	121 160	160 870
	104 305	41 634	h7 501	120 535	114 607	198 996	3079	93 727	32 764	28 800	138 470
	53	9	9	56	23	53	9	9	9	9	23
	3580	066	4025	2204	0484	8460	645	2724	1830	1750	3500
	91	16		16	16	16	17		17	16	25
	11.57	18.21	(20.35)	13.78	9.50	(10.51)	44.03	(21.1)	27.50	96.6	15.92
	9	9	9	9	9	15	9	9	9	9	9
Table I, contd.	9461	277	1820	1406	2202	3695	161.37	1801	1098	692.73	2128
Tab]	• •	TJ	T	Ω	>	M	Хе	×	άχ	Zn	$z_{\mathbf{r}}$

ർ

e = normal boiling point, volume strongly influenced by quantum effects f = ΔH_{f} re-calculated using additional references g = 43 atma = See appendix b = Triple point c = 35.5 atm

d = 103 atm

Appendix

Methods of estimation of experimentally undetermined quantities, or quantities not already estimated in the references, are explained in this appendix. Metallic radii are from Zachariasen. 27

- Ac The volume was calculated using Zachariasen's preferred metallic radius. The multiplication factor to account for thermal expansion and phase change was 1.04, in analogy with La.
- Am Zachariasen's radius for the hexagonal phase was used. The multiplication factor was 1.05, in analogy with Sm and Gd. The heat content values of Gd were used in the absence of data for Am.
- At The volume was obtained by extrapolation of values for elements of the same group.
- Bk The volume was estimated as for Am, using a multiplication factor of 1.07 derived from Tb. Heat content values for Tb were used.
- Cf The metallic radii of the hexagonal phases of Am and Bk were linearly extrapolated for the elements beyond Bk in their fⁿ⁻¹dsp configurations. The radius of Gd is slightly higher than would be predicted from the other fⁿ⁻¹dsp lanthanides. The radius of Cm is correspondingly higher than those of Am and Bk, and has not been used in the extrapolation. The multiplication factor for Cf was 1.09, derived from Dy. The observed melting point of 1173 K³ was probably not Cf metal. Heat content values of Dy were used.
- Cm The volume was estimated as for Am, with a multiplication factor of 1.05, derived from Gd. Heat content values of Gd were used.
- Dy The volume was estimated from values for the solid, thermal expansion, and phase change. 29
- Er The volume was estimated as for Dy.
- Es The volume was estimated as for Cf, with a multiplication factor derived from Ho of 1.12. Heat content values of Gd were used.

App., contd.

- Eu The volume was estimated as for Dy.
- Fm The volume was estimated as for Cf, with a multiplication factor derived from Er of 1.14. Heat content values of Gd were used.
- Fr The volume was estimated as for Ac, with a multiplication factor derived from Cs of 1.02.
- Gd The volume was estimated as for Dy.
- Ho The volume was estimated as for Dy.
- Lr The volume was estimated as for Cf, with a multiplication factor derived from Lu of 1.10. Heat content values of Tm were used.
- Lu The volume was estimated as for Dy.
- Md The trivalent metallic radius was estimated as for Cf, and 0.238 Å, derived from the excess radii of divalent Eu and Yb over the trivalent lanthanides, was added to predict the divalent radii. The multiplication factor derived from Yb was 1.11. Heat content values of Yb were used.
- No The volume and heat content values were estimated as for Md.
- Np Volume estimated from volume of solid at 600 K and multiplication factor of 1.08.
- Pa The volume was estimated as for Ac, with a multiplication factor of l.l derived from U.
- Pm The volume was estimated as for Dy. The effect of phase change was estimated.
- Po The volume was estimated by extrapolation of the values for elements of the same group.
- Ra The volume was estimated as for Ac, with a multiplication factor of 1.09 derived from Ba.
- Rn The volume was estimated by extrapolation based on trends in the neighboring groups.

App., contd.

Sc - The volume was estimated as for Dy. The effect of phase change was estimated.

Sm - The volume was estimated as for Dy.

Tb - The volume was estimated as for Dy.

Tc - The volume was estimated by interpolation among elements of the same period.

Tm - The volume was estimated as for Dy.

Y - The volume was estimated as for Dy. The effect of phase change was estimated.

References

- (1) L. Brewer, The Cohesive Energies of the Elements, LBL Report 3720 (1975).
- (2) J. Donohue, <u>The Structures of the Elements</u>, Wiley and Sons, New York (1974).
- (3) R. G. Haire and R. D. Baybary, J. Inorg. Nucl. Chem., 36, 1295 (1974).
- (4) J. M. Fournier, J. Phys. Chem. Solids, <u>37</u>, 235 (1976).
- (5) W. H. Zachariasen, J. Inorg. Nucl. Chem., <u>37</u>, 1441 (1975).
- (6) R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley and D. D. Wagman, "Selected Values of the Thermodynamic Properties of the Elements," American Society for Metals, Metals Park, Ohio (1973).
- (7) D. R. Stephens, H. D. Stromberg and E. M. Lilley, J. Phys. Chem. Solids, 29, 815 (1968).
- (8) E. H. Baker, Inst. Min. Metall., Trans., Sec. C, <u>83</u>, C237 (1974).
- (9) D. R. Stull and G. C. Sinke, Advances in Chem. Ser., No. 18 (1956).
- (10) C. E. Holcombe, Jr., D. D. Smith, J. D. Lore, W. K. Duerksen and D. A. Carpenter, High Temp. Sci., 5, 349 (1973).
- (11) H. R. Leider, O. H. Krikorian and D. A. Young, Carbon, 11, 555 (1973).
- (12) J. W. Ward, R. W. Ohse and R. Reul, J. Chem. Phys., <u>62</u>, 2366 (1975).
- (13) A. Cezairliyan, High Temp.-High Press., 4, 453 (1972).
- (14) W. Müller, Chemiker-Zeitung, 97, 531 (1973).
- (15) A. Cezairliyan, High Temp. Sci., 4, 248 (1972).
- (16) A. F. Crawley, Int. Met. Rev., <u>19</u>, 32 (1974).
- (17) L. J. Wittenberg and R. DeWitt, J. Chem. Phys., <u>56</u>, 4526 (1974).
- (18) <u>International Critical Tables</u>, E. W. Washburn, Ed., McGraw-Hill, New York, 3, 20 (1926).
- (19) Landolt-Börnstein, "Zahlenwerte und Funktionen," 6th Ed., Bd. II: 1, Spinger-Verlag, Berlin-Heidelberg, 1971.
- (20) W. Klemm, H. Spitzer and H. Niermann, Angew. Chem., 72, 985 (1963).
- (21) D. J. Steinberg, Met. Trans., 5, 1341 (1974).
- (22) Y. Y. Sumin and Sh. I. Peizulaev, Russ. J. Phys. Chem., 47, 910 (1973).
- (23) D. W. Bonnell, Ph.D. Thesis, Rice University, 1972.
- (24) A. I. Savvatinskii, Teplofiz. Vys. Temp., <u>11</u>, 1187 (1973). cont'd.

Ref., contd.

- (25) F. Grønvold, J. Chem. Thermodyn., $\underline{5}$, 525 (1973).
- (26) H. Stephens, private communication to L. Brewer, 1974.
- (27) W. H. Zachariasen, J. Inorg. Nucl. Chem., <u>35</u>, 3487 (1973).
- (28) F. H. Spedding and A. H. Daane, <u>The Rare Earths</u>, Wiley and Sons, New York, 1961.
- (29) A. Jayaraman, Phys. Rev., <u>139A</u>, 690 (1965).